An Infeasible Bundle Method for Nonsmooth Convex Constrained Optimization without a Penalty Function or a Filter

نویسندگان

  • Claudia A. Sagastizábal
  • Mikhail V. Solodov
چکیده

Global convergence in constrained optimization algorithms has traditionally been enforced by the use of parametrized penalty functions. Recently, the filter strategy has been introduced as an alternative. At least part of the motivation for filter methods consists in avoiding the need for estimating a suitable penalty parameter, which is often a delicate task. In this paper, we demonstrate that the use of a parametrized penalty function in nonsmooth convex optimization can be avoided without using the relatively complex filter methods. We propose an approach which appears to be more direct and easier to implement, in the sense that it is closer in spirit and structure to the well-developed unconstrained bundle methods. Preliminary computational results are also reported.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems

Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...

متن کامل

A feasible second order bundle algorithm for nonsmooth, nonconvex optimization problems with inequality constraints: I. Derivation and convergence

This paper extends the SQP-approach of the well-known bundle-Newton method for nonsmooth unconstrained minimization to the nonlinearly constrained case. Instead of using a penalty function or a filter or an improvement function to deal with the presence of constraints, the search direction is determined by solving a convex quadratically constrained quadratic program to obtain good iteration poi...

متن کامل

A Bundle Method for a Class of Bilevel Nonsmooth Convex Minimization Problems

We consider the bilevel problem of minimizing a nonsmooth convex function over the set of minimizers of another nonsmooth convex function. Standard convex constrained optimization is a particular case in this framework, corresponding to taking the lower level function as a penalty of the feasible set. We develop an explicit bundle-type algorithm for solving the bilevel problem, where each itera...

متن کامل

A bundle-filter method for nonsmooth convex constrained optimization

For solving nonsmooth convex constrained optimization problems, we propose an algorithm which combines the ideas of the proximal bundle methods with the filter strategy for evaluating candidate points. The resulting algorithm inherits some attractive features from both approaches. On the one hand, it allows effective control of the size of quadratic programming subproblems via the compression a...

متن کامل

Particle Swarm Optimization for Hydraulic Analysis of Water Distribution Systems

The analysis of flow in water-distribution networks with several pumps by the Content Model may be turned into a non-convex optimization uncertain problem with multiple solutions. Newton-based methods such as GGA are not able to capture a global optimum in these situations. On the other hand, evolutionary methods designed to use the population of individuals may find a global solution even for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2005